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Introduction

~~J -J

1..ntodctin .

Ever since the publication of the collision resolution algorithms .7,

(CRA) of Capetanakis-Tsybakov-Mikhailov (CTM) there has been a growing

interest In the performance analysis of these channel access algorithms "

(also called protocols). The particular class of algorithms with which

this paper is concerned has been clearly described in [FF 1983] which

we recall here.

(1.1) A single broadcast channel is shared among an infinite number of

independent sources which emit packets. Channel time is discrete and L

it takes one interval of time to transmit one packet. Sources are

synchronized so that transmissions are initiated at the beginning of

each time slot t 0,1,2,... We denote by X the number of new pac-

kets generated in a time slot and assume that X has a Poisson distri-

bution with parameter so E(X) X and variance V(X) = A. X is

also independent of the past history of the channel.

(1.2) Each transmission is broadcast to every user - including the emitter.

When several stations transmit simultaneously, packets will collide and

none of them is received correctly. When n packets collide this is

called "a collision of multiplicity n". Each user involved in the

collision uses the same algorithm for retransmitting its blocked packet

and they must resolve the collision without the benefit of any other

source of information on other users except for information concerning the

channel itself,which provides ternary feedback: idle, successful trans-

mission, collision. AIR F02C , . 3. ?I1IT ,

eippr'oved '*.-* -2

CAM i . ,iwiuChlef, 706elctal Informtion Division :'.-.7
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The first algorithm proposed for resolving the collision is the

ALOHA algorithm which is now known to be unstable and we refer the reader

to the author's paper (Ro-To 19831 for a proof using elementary martin-

gale theory. The first class of stable algorithms were developed in-

dependently by [Ca 1979], [T-M 1978] with additional interesting varia-

tions due to Massey [MA 1981], and Tsybakov-Vvedenskaya [T-V 1980]. Of

primary importance in each of these papers is the determination of

X maximum allowable arrival rate of new packets. In particular
max

for A <) the system is stable - equivalently, the Markov chain which
max

describes the system is positively recurrent. As noted by several

authors including [Ma 1981], [FFH 1983] the only quantity one needs in

order to evaluate X is the expected length of the collision resolu-
max

tion interval (CRI) determined by the CRA. More precisely let t(n)

denote the random length of time required by the CRA to resolve a col-

lision of multiplicity n. The CTM algorithm, see [Ma 19811, leads

to the recurrence relation

9.Z(n) + (S) + (n- S), n > 2

(1.3) iO'-nn
1(0) = (I) .--

where Sn is a binomially distributed random variable with P( (n 2=
n n,

Setting L(n) = E(E(n)) and using the fact that

n (n) n:"
E(9(n) = YE((n)IS 1) 2-

i= 0  
n 

-).J,.

= ) (1 + L(i) + L(n - 1)) 2- %n

i =0 n (n) -
= 1 + 2 E L(i) 2n

.- i=O :"

-. . . . . ..-.... .,.. .,.
---- ---- --- ---- -~.i jimmiAm Iiin~ml i~ ~~u~ .I~iii~ii~~im~~mii~bm ~ ::::ii:Im
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Consequently L(n) satisfies the recurrence relation

L(n) 1 + 2 Z L(i) 1 ]2 n 2
i=O'

(1.4)

IL(O) L(1)= 1

Remark: this is equation (3.12) on p. 85 of (Ma 19811.

Similarly the CTM algorithm with continuous entry satisfies a re-

currence relation of the form:

i(n) 1 + Z(S + X) + Z(n - S + Y)
(1.5) n

1(0) = (l) = 1

where Sn% X, Y are mutually independent;

P(X = j) = P(Y = J) = exp(-X)Xj/j!, j = 0,1,...

and Sn  is binomially distributed as before with parameters n, p = 1/2.

Proceeding in exactly the same way as we did in deriving (1.4) we see

that L(n) ; E(k(n)) satisfies the system of equations (with infinitely

many unknowns!)

L(n) = 1 + 2 E L(j).lj, n > 2
J=O

(1.6)L(O) = L(1) = 1

where -

(1.7) PnJ P(S + X = - (n 2-nexp(-)xj-i/(-i); j > 0.
i-0

For future reference we note that

q'. ."..I
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I.- - 2-ne-,..

(1.8)pn =2-e and 2 P = (X + n).

It is worth pointing out that similar but more complicated recurrence

relations for the expected delay have been derived by [FFHJ 19831 and it

would therefore seem to be quite useful to present an elementary method

for studying the existence, uniqueness and asymptotic properties of solu-

tions to equations of the form (1.6). It is the purpose of this paper

to present just such a method, a percursor of which may already be found

in a previous paper of the author [Ro 1973]. The method is elementary

in the sense that the intricate and ingenious complex variables methods

of [FFH 1983] are circumvented. It is to be observed that a similar

idea also appears in [T-V 1980] where they refer to the notion of a

"barrier function".

The paper is organized as follows: In part 2 we prove an existence

and uniqueness theorem for equation 1.6. In particular for X < )"max

(-5 + /4-T)/4 = .35078 we show that there exists a unique nonnegative

solution L(n) to (1.6) satisfying the growth condition

(1.9) L(n) < a.n + b for n > 2.

Some additional results obtained include:

(i) a lower bound for L(n) of the form

(1.10) L(n) > (2(n - X) - 1]/(1 - 2X), n > 2, X < .
max

For example when A = .34 we obtain

(1.11) L(n) > 6.25n - 5.25, n > 2.

.o -- 2 , -°%
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On the other hand when L(n) is the solution to (1.4) then it

can be shown, cf. [Ma 1981, p. 871 that

(1.12) L(n) < 3n for n > 2.

This confirms in a quantitative way one's intuition that the length

of a CRI is longer on the average for the continuous entry scheme than

it is for the CRA with blocked access. The lower bounds (1.10) and (1.11) .

appear to be new.

(ii) A short and simple proof of the intuitively obvious fact than L(n)

is monotone increasing in n - see lemma 2.19.

(iii) Simplifications and improvements in the statements and proofs of

Theorem 2 of [T-V 1980]. In particular their condition (4.5) is shown

to be unnecessary for the validity of their theorems.

In part 3 we turn our attention to the sequence L(n) defined by

the recurrence relation (1.4) already treated in some detail in [Ma 1981].

In that paper Massey conjectured (see inequality 3.31 of [Ma 19811) that

(1.13) L(i) + L(n - i) < L(n) + 1, 0 < i < n

and used this inequality to derive upper and lower bounds for the variance

V(n). It seems not to have been noticed that the validity of (1.13) im-

plies the existence of lim L(n)/n which conflicts with assertions in
n- ao

the literature that this limit does not exist. Thus Massey's derivations

of upper and lower bounds for V(n) seem, to this atuhor at least, to

be incomplete.

S . . .- . .. . . .
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2. Existence and Uniqueness of Solutions to Equation (1.6)

To simplify the tyepsetting we denote a sequence by f(O),f(l) ....

instead of the more customary notation fo,fl,... and define the

positive linear operator G acting on sequences
n

f(n), n = 0,1,2 via the recipe

(2.1) G f 2 F f(J)p = 2E(f(S + X)).

J=0

In this notation the infinite system of equations (1.6) can be re-

written in the more convenient operator form

J L(n) =1 + GL, n>2

n _
(2.2) I n

L(O) =L(l) -1

We can get rid of the constant 1 appearing on the right hand side of

(2.2) via the change of variables f(n) = 1 + L(n), n > 0 and it is

easy to see that f(n) satisfies the system

f~n) =G f""(2.3) n

f(O) = f(l) - 2

We begin by noting that the function h(n) = M(n - 2A), n 0,1,2,...

satisfies the equation (2.3) but with slightly different initial con-

ditions: h(O) -2M, h(1) = M(1 - 2A). To see this Just compute

Gn h = 2E(h(S n + X)) - 2ME(Sn + X) - 4MX

= 2?(n/2) + A, - 4MA = M(n - 2A) - h(n).

Note: Throughout this paper we assume 0 < N < 1/2. Notice that h(n)

is linear in n and it is reasonable to conjecture that f(n) itself

...... ................... .... ............. ................ .....
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is nearly linear in the sense that f(n) < a'n + b as n c". Unlike

the system of equations (1.4) for which uniqueness and existence is

trivial it is not at all a priori evident that solutions to (2.3) are

unique. We begin therefore with a proof of uniqueness since this re-

quires the introduction of a technique that will serve us well in our

existence proof.

Theorem: There is at most one nonnegative solution f(n) to (2.3) : -

satisfying the growth condition If(n)l < a'n + b.

L
Proof: Suppose fl(n) and f2 (n) are two solutions to (2.3) then2
W(n) = fl(n) - f2 (n) satisfies1 2i

w(n) GnW, n> 2

(2.4)

w(O) = w(l) = 0 and jw(n)j < a'n + b'

Thus it suffices to show that the only solution to (2.4) is w(n) - 0.

This follows at once from the existence of a "barrier function"

2
;)(n) = h(n) + n , n > 2, p(O) = p(l) = 0 with the following pro-

perties:

(i) p(n) > 0, n > 2 % %]

(2.5) (ii) lim Iw(n)I/p(n) - 0
n-

(it) 2 E O(J)p - p(n) n 2j-2 ...nj

(i) is obvious and (ii) follows from the fact that lm n- 2 w(n) u 0,
n-+ o0

while 1 - 2A > 0. Later we shall have to restrict A even further

.. .. . . .... . .... ..... .... ...... .•............. ... ... .. ... ... ..
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and assume k = . 35078. We postpone for the moment a proof of
max

(iii) and proceed to derive the uniqueness theorem by exploiting the

properties of p. Indeed the assumption that w(n) t 0 leads to a

contradiction as we now show. Condition (ii) implies that if w(n)

is not identically zero then there exists a finite integer n' '. 2

with the property sup Iw(n)I/p(n) = lw(n')I/(n') 0. From equation
n>2

(2.4) we see that

CO

lw(n')I < 2 E (Iw(J)L/p(j)](j)pn i
j=2

< (Iw(n')I/P(n'))c,, < l(n')l ,

where we have used (2.5 iii) in the last step. This is a contradiction

so we conclude sup Iw(n)I/p(n) = 0 i.e. w(n) HE 0.
n>2

We now prove that pAn) satisfies property (2.5 iii). Since

2
2 J nj is twice the second moment of the random variable S + X
j=l n - -

whose variance is equal to n/4 + A we see at once that 2 F j 2 p =

n/4 + A + (n/2 + X). Consequently

2 2(2.6) 2 X j P = 2[(n/4 + X) + (n/2 + X)2 2pj=2 nj

P 1  (A + n), cf (1.8).

A similar calculation yields

(2.7) 2 > h(j)p . h(n) - 2p M(-2X) - 2p nM(l - 2)
j=2 -.

After some routine algebraic manipulations the term 4MXp 0 - 2M(l - 2X)pnI

n+l 2
simplifies to M2 exp(-A)(2X2 + ,(2n + 1) - n). A necessary condition

:.2
~~i.,,,:-
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then for (2.5 iii) to hold is that 2X2 + X(2n + 1) - n < 0 for all

n - 2. This requires an examination of the largest positive root

2I (n) of the quadratic equation 2A + A(2 n + I) - n which turns
max

out to be

(2.8) A (n) = [-(2n + 1) + 14n2 + 12n + 1 1/4
max

42 2
Notice that 4n + 12n + I > (2n + 2) for n > 2 and therefore

\max (n) > .25. Actually we can do a lot better since it is easy to see

that the smallest value of A (n) occurs at n = 2 with A (2) =
max max

.35078 = Xa. Summing up then we have shown that for X < .35078
max

(2.9a) 2 Z h(j)p nj - h(n) < exp(-X)(2A + A(2n + 1) - n) < 0.
j=2 n ._

The next step is to study t2 j 2 p nj_ n2  for n > 2. From (2.6)SJ=2 n -

we see that

2 2 2 2 2
(2.9b) 2 Z Pj = (n/2 + 2X +n /2 + 2nX+ - n

j=2 nj

2 2=n/2 + 2A + 2n + 2X -n /2.

A simple calculation shows that the right hand side of (2.10) is strictly

negative for all n > 4 and 0 < X < .5. And it is also clear that

for any fixed A < A0  and n - 2,3 we can choose M (depending on X)

2 2sufficiently large and positive so that 2 E (h(j) + j )Pnj < h(n) + n ,n > 2

and this completes the proof of uniqueness.

2Remark: The function P(n) - h(n) + n for n _ 2 with p(0) p(l) 0

satisfies the inequality G P < P(n) and is called a "barrier function"'-- n

°-%
.....-... ....... ... .'-'"• • • ,.'.."..*'......"...................'......,..,....'...... .-.. .-......'.."....".."..-..,......-....'........--..-...-..'

-." ". • , . . . -"- . - . . . "S- 'd'_'L ,• . ,- •.. . . ., " .. " -.. . .. . .. ..
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by Tsybakov-Vvedenskaya. By constructing barrier function P(n) ten-

2
ding to infinity at the rate n the uniqueness proof of Tsybakov-

Vvedenskaya is considerably simplified as the reader may easily check

for himself. Similar ideas were used (but with respect to a different

operator G!) in our paper [Ro 19731.

We now prove the existence of a nonnegative solution to the system

of equations

Gn g g(n)

.g(O)= --g(l) a a ' 0, i = 0,1.

Remark: The system (2.3) corresponds to the special case a.= a 2.

Our proof is similar to that in [T-V 1980] except that a judicious use

of the Lebesgue dominated convergence theorem yields a more streamlined

proof. We need the following

(2.11) Lemma: Let X0 (n) h(n) , n > 2, and X0 (0) a0 , X
0 (1) = aI.

Then for A < A X(n) is a barrier function i.e. Gn  (n).
0 n -

n > 2, provided M = M(A,ao,aI) defined at (2.15) below.

Proof: The necessary calculations are similar to those already carried

0
out at (2.7). Since X (j) - h(j) 0 0 only for j = 0,1 we see that

Gn (X° - h) = (X'(0) - h(O))pn 0 + (X0 (1) - h1M))nI = r(n,\).

Thus for n > 2 we have

(2.12) G n = G h + G (X° - h) X°(n) + r(n,X), n
:-n in n -- t

",.- .- .... . .. . .............. .............. ..
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Consequently r(n,A) 0 0, n - 2 is a necessary and sufficient condition

for X to be a barrier function. In particular

(2.13) r(n,A) M2-e (2A + A(2n + 1) - n) + a e 2

+ a e- 2-n (A + n1)

-n-A 2
= 2 e -M(2, + ,(2n + 1) - n) + aO. + a l(.' + n)

0 1

Since a and a are nonnegative it is clear that a necessary con-
02

dition for r(n,A) < 0 all n > 2 is that 2A2 + X(2n + 1) - n < 0 -

equivalently for A < A = X(2) = .35078 (cf (2.8)). Keeping in0 max

mind that n - (2A2 + A(2n + 1)) > 0 for X < X we choose

2 2
(2.14) M > (a1Xn + a + a )/(n - (2A + X(2n + 1))), n > 2,

and it is easy to see that the right hand side of (2.14) remains bounded

as n o. So it suffices to choose

(2.15) M(A,aoa I) = sup [(alXn + aoX + 2 n -/(2 2 + A(2n + )))].
n>2 1 ( 1

This completes the proof of the existence of a harrier function.

0 0Remark: Notice that G X < X (n) implies that X is a nonnegative
n -

function integrable in the sense of Lebesgue with respect to the

"weights" 1i (j) = 2p since G = g X°(J)p (j) < X°(n). We shalln nj n - n

make use of this remark shortly.

Equipped with the barrier function X°(n) of lemma (2.11) it is

fairly straightforward to construct a solution to equation (2.10). De-

fine the sequence of functions xk (n) via the recipe

.. .

•. o.......... .... . .... . .. . ° . . -... . .. .- ° °•.... .-.-- °.° °
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(2.16) xk (n) G X k-- 2

k kX (0) = aO, X (1) = a1.

(2.17) Assertion: 0 < xk+l (n) < xk (n), k = 0,1,2,... and theref-re

k
lim X (n) = g(n) exists. Moreover G g= g(n) for n > 2 and
k- o

g(n) < X0 (n) = M(X,a0 ,a1 )(n - 2X), so Ig(n)1 < a'n + b.

Proof: XI(n) = G n X
° < X°(n) implies X2(n) a G = X l (n) < X°(n)

nn n_

and so on. Thus X k(n) is monotone decreasing in k as claimed and

k
since the sequence is bounded below it follows that g(n) lim X (n)

k-+ oD

exists and satisfies the inequality Ig(n)I < a-n + b. The only thing

we have to check is that Gng = g(n) for n > 2. Observe that
kn

0 .-X () < X0 (j) and Z X0 (J)2p < X0 (n) permit us to use the
nj--j=0 .

Lebesgue dominated convergence theorem to conclude
00 ° 0

k k(2.18) lrn L X (j)2Pnj = z (lim X (j))2pn"
k-*( j=O J=O k- nj

k k k+l
i.e. k G = G (limX) G g. But Ig(n) Gng- < Ig(n) X (n)l +

n  n Gng -n:) X.n:
k+I

Ix (n) - GngI.

Clearly lim jg(n) - xk+l (n)l 0 and lim IXk+l(n) - GngI =

k-
lim G nxk - Gngj = 0 using (2.18) for the last step. This completes .%-.

n: n

the proof of the existence of a solution to (2.10) satisfying the growth L

condition Ig(n)I < a'n + b, consequently the solution is unique.

We now proceed to use the existence and uniqueness theorems to de-

rive the lower bound (1.10).

% 'J. 2

77:%
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Set w(n) = f(n) - h(n) where f is the unique solution to (2.3)

satisfying the growth condition If(n)I < an + b and h(n) = M(n - 2X).

It is easy to check that for 0 M e 2(1 - 2X) we have w(O) 0,

w(l) > 0 with (; w = w(n), n > 2 and jw(n)1 l an + b. Consequently

by the uniqueness theorem w(n) > 0 all n > 2 i.e.

-1
f(n) > h(n) 1 f2(l - 2X) - cl(n - 2N) for n > 2.

Since this is true for every c > 0 we get f(n) >, (2(1 - 2X)-l)(n - 2X).

The lower bound for L(n) is now derived by noting that L(n) f(n) - 1.

Finally we show how the probabilistic representation Gn = 2E(g(Sn + X))

may be used to show that the solutions to (2.10) are monotone increasing

in n.

(2.19) Lemma: If g(n) is monotone increasing and nonnegative then so

is G 9.

Proof: -n+lg G n g = 2E{g(S n+ + X) - g(Sn + X)}, so it suffices to
.. g(Sn+ 1  - ~ + )>0 Bt""

-show that E(g( + X) -g(S n  _) ,.0..Bu

E(g(Sn+ 1 + X) - g(Sn + X) ISn i ,X = j) =

(1/2 )(g(i + j + 1) - g(i + j)) > 0 for every i,j.

Equivalently

(2.20) E(g(Sn+ 1 + X) -g(S n + X)IF n) > 0

where F = smallest sigma-field with respect to which both Sn X are measurable.n n
Taking expectations of both sides of (2.20) yields the desired inequality

k
that Cn+lg - Gng > 0. In particular then each function X (n) is monn-

tone increasing in n since X0 (n) is obviously monotone. Consequently

d kso is the limit g(n) = lim X (n).

-. . . .. . . .%-•k-- -- .- .
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3. Remarks on the asymptotic behaviour of the solution to (1.4)

In the postscript to [Ma 1981] reports that Vvedenskaya has shown

(so far unpublished) that lir 1.(n)/n does not exist although it can be

shown (and we shall sketch such a proof below based on the methods in

the preceding section of this paper) that

(3.1) 2.881 < unm inf L(n)/m < urn sup L(n)/n < 2.8966.

In the same paper Massey asserted, without proof, that

(3.2) L(i) + L(n - i) < L(n) + 1, 0 < i < n.

In September of 1983 1 pointed out to my colleagues Don Towsley and

Jack Wolf of the Department of Electrical and Computer Engineering here

at the University of Massachusetts that any inequality of the form:

(3.3) L(i) + L(n - i) < L(n) + c, 0 < I < n where c

is an arbitrary constant, necessarily implies the existence of lim L(n)In.

In other words the nonexistence of the lim L(n)/n is inconsistent

with the validity of (3.3). To see this we need to introduce the notion

of a subadditive sequence.

(3.4) Definition: We say that a sequence a is subadditive if
n

; + a > holds.n m- an+m ..2

(3.5) Theorem: If a is a subadditive sequence then ltm a /n exists.
n n

Proof: See IP-SZ (1972) p.23, problem 981.
'p°'p

.............................................................................
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Application: Suppose (3.3) holds then the sequence a = c - L(n) satis-

lies the condition a + a > a which is equivalent to the condition
m n-rn-- nl

a + - a- i.e. a is subadditive and therefore lim a /n = lim L(n)/n
1in

exists.

Now inequality (3.2) was used by Massey to derive upper and lower

hounds on the asymptotic behaviour of the variance of the CRI length

V(n) defined by (1.3). These proofs must now be regarded as incomplete.

Turning now to the proof of (3.1) we shall content ourselves with a

sketch of the derivation of the upper bound

(3.6) lim sup L(n)/n < 2.8966. -.

n- ,

As we did in part 2 of this paper we set f(n) = L(n) + 1 and study

the asymptotic behaviour of the recurrence relation

f(n) = 2E(f(Sn)), n > 2
(3.7) ".'

f(O) = f(l) = 2

We shall make extensive use of the following elementary lemma the proof

of which is left to the reader.

(3.8) Lemma: Suppose W(i) > 0, 0 < i < m and W(n) > 2E(W(Sn)) n > m.

Then W(n) > 0 all n.

Bring in the function 11(n) = o.n which satisfies the recurrence

relation (3.7) for all n. Set g(n) = H(n), n > 4 and g(n) =f(n),

n 3 and compute E(g(S) - H(S = r(n). Using the fact that f(O) =

f(l) = 2, f(2) 6 we see that

o.7- . . . . . .
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3 !
(.9) r(n) F (g(j) H(i)) n2 - n

j =0

= 2-n(n - 1) 2/(n(n .. 1)) + (2 ,1/(n- 1) + (3 t)

+ (n - 2)(13/9 - a/2)

ThU problem then is to choose Ca in such a way that r(n) < 0 for n > 4

and W(n) = g(n) - f(n) > 0 for 0 < n < 4. From (3.9) we see that a

necessary condition is for 13/9 - c/ 2 < 0 or o > 2.8889. It turns out

= 2.8889 is too small and that we must choose u = 23/9 + .00778 2.8966.

With this choice of a one can show by means of a straightforward but

tedious calculation that W(n) = g(n) - f(n) satisfies the conditions --

of lemma 3.8 and hence f(n) < g(n) = 2.89666n for n > 4. in a similar

calculation we can derive Massey's lower bounds (Table 3.2 on P. 87 of

(Ma 19811).

4. Concluding remarks.

In this paper we have presented an operator method for obtaining

upper and lower bounds for the expected length L(n) of a CRI for various

protocols. Although we shall not carry out such an analysis here It is

noteworthy that the same methods can be used to obtain upper and lower

hounds for the expected delay W(n) = expected delay experienced by a

packet that had its first transmission during a collision of multiplicity

n. As pointed out by [FFIIJ (1983)1 in the case of CTMCRA with blocked

access w(n) (with W(n) = E(w(n))) satisfies the recurrence relation

w(n) w(Sn 1 + 1) with probability 1/2(4.1)

w(n) - w(n - SnI) + P(Sn 1 ) with probability 112.

.-:9n-
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Taking expectations as before we are led to a more complicated system of

recurrence equations whose asymptotics can be studied by means of similar

methods. We intend to pursue these questions in another paper.

We must however point out that our methods have so far been unable to

give a proof of Massey's upper and lower bounds for V(n) = Variance (E(n)).

Obtaining upper and lower bounds for the second and higher order moments

of P.(n) is one of the more interesting and still open problems in this

area.
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